metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hui-Lu Wu,* Wen-Kui Dong and Ying Chen

School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China

Correspondence e-mail: wuhuilu@163.com

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.005 \text{ Å}$ Disorder in solvent or counterion R factor = 0.045 wR factor = 0.131 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography

All rights reserved

Aqua[tris(1*H*-benzimidazol-2-ylmethyl)amine]copper(II) bis(perchlorate) 4-nitropyridine *N*-oxide monohydrate

In the title structure, $[Cu(C_{24}H_{21}N_7)(H_2O)](ClO_4)_2$ -C₅H₄N₂O₃·H₂O, the Cu^{II} atom is bonded to a tris(1*H*benzimidazol-2-ylmethyl)amine (ntb) ligand and a water molecule through four N atoms and one O atom, giving a distorted trigonal–bipyramidal coordination geometry with approximate C_3 molecular symmetry.

Comment

The asymmetric unit of the title compound, (I) (Fig. 1), consists of one [Cu(ntb)(H2O)]²⁺ cation [ntb is tris(1Hbenzimidazol-2-ylmethyl)amine], two perchlorate anions, one molecule of 4-nitropyridine N-oxide and one molecule of water of crystallization, which is disordered over two sites with equal occupancies. The Cu^{II} atom is five-coordinate with an N₄O ligand set. The ntb ligand acts as a tetradentate N-donor and an aqua O atom completes the coordination. The coordination geometry of the Cu^{II} atom is best described as distorted trigonal-bipyramidal, with approximate molecular site symmetry C_3 . The coordination geometry around the Cu^{II} atoms appears to relieve steric crowding. The equatorial plane is occupied by three N atoms of three benzimidazolyl groups, while the Cu^{II} atom protrudes towards O1 and is 0.319 (1) Å from the plane of atoms N3/N5/N7. The axial positions are occupied by N1 and O1. Selected bond lengths and angles are listed in Table 1.

The three benzimidazole ring arms of the ntb ligand form a cone-shaped cavity. The distortions of the N1-Cu1-N3, N1-Cu1-N5 and N1-Cu1-N7 angles, which are all *ca* 10° less than the ideal 90°, are imposed by the geometry of the ntb ligand. In the crystal structure, intermolecular O-H···O and N-H···O hydrogen bonds, along with weak intermolecular C-H···O hydrogen bonds and a single significant π - π stacking interaction [where $Cg1\cdots Cg1(2 - x, -y, 1 - z) = 3.6833$ (3) Å (Cg1 is the centroid of ring atoms C10/N4/C11/C16/N5) and the perpendicular distance is 3.49 Å] connect cations, anions and solvent molecules into a three-dimensional network (Table 2 and Fig. 2)

Received 9 May 2006 Accepted 15 June 2006

m1708 Wu et al. • [Cu(C₂₄H₂₁N₇)(H₂O)](ClO₄)₂·C₅H₄N₂O₃·H₂O doi:10.1107/S1600536806023087 Acta Cryst. (2006). E**62**, m1708–m1710

 $V = 3732.2 (15) \text{ Å}^3$

 $D_x = 1.506 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation

Block, blue-green

 $0.3 \times 0.2 \times 0.2$ mm

19956 measured reflections

7345 independent reflections 5401 reflections with $I > 2\sigma(I)$

 $\mu = 0.80 \text{ mm}^{-1}$

T = 298 (2) K

 $\begin{aligned} R_{\rm int} &= 0.012\\ \theta_{\rm max} &= 26.0^\circ \end{aligned}$

Z = 4

Figure 1

The asymmetric unit of (I), showing 30% probability displacement ellipsoids. H atoms have been omitted. Both disorder components are shown.

Figure 2

Partial packing plot (Spek, 2003) of (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Experimental

To a stirred solution of tris(1*H*-benzimidazol-2-ylmethyl)amine (407 mg, 1 mmol) in methanol (20 ml), Cu(ClO₄)₂· $6H_2O$ (370 mg, 1 mmol) was added, followed by the addition of a solution of 4-nitropyridine *N*-oxide (140 mg, 1 mmol) in methanol (5 ml). The resulting clear blue solution was stirred for 8 h and then allowed to stand at room temperature. Blue–green crystals suitable for X-ray diffraction studies were obtained after three weeks (yield 437 mg,

51%). Analysis, found: C 40.95, H 3.41, N 14.63%; calculated for $C_{29}H_{29}Cl_2CuN_9O_{13}$: C 41.17, H 3.43, N 14.89%.

Crystal data

 $\begin{bmatrix} Cu(C_{24}H_{21}N_7)(H_2O) \end{bmatrix} (ClO_4)_{2} - C_5H_4N_2O_3 \cdot H_2O \\ M_r = 846.05 \\ Monoclinic, P2_1/n \\ a = 11.986 (3) \ \ddot{A} \\ b = 24.134 (6) \ \dot{A} \\ c = 14.226 (3) \ \ddot{A} \\ \beta = 114.913 (1)^{\circ} \end{bmatrix}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\min} = 0.83, T_{\max} = 0.85$

Refinement

Table 1 Selected geometric parameters (Å, °).

Cu1-O1	1.957 (2)	Cu1-N5	2.085 (3)
Cu1-N3	1.992 (3)	Cu1-N1	2.127 (3)
Cu1-N7	2.023 (3)		
O1-Cu1-N3	96.50 (10)	N7-Cu1-N5	106.90 (11)
O1-Cu1-N7	98.53 (10)	O1-Cu1-N1	176.53 (10)
N3-Cu1-N7	128.01 (11)	N3-Cu1-N1	80.78 (11)
O1-Cu1-N5	102.72 (10)	N7-Cu1-N1	81.59 (11)
N3-Cu1-N5	117.68 (11)	N5-Cu1-N1	80.52 (11)

Table 2Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1C···O21	0.85	2.44	3.230 (4)	156
$O1 - H1E \cdot \cdot \cdot O2^{i}$	0.82	2.17	2.807 (3)	135
$O1W-H1WC\cdots O1$	0.85	2.34	2.733 (5)	108
N4-H4A···O2 ⁱⁱ	0.86	2.57	3.274 (4)	139
$N4-H4A\cdots O14^{ii}$	0.86	2.48	3.159 (4)	136
N6-H6A···O24 ⁱⁱⁱ	0.86	2.14	2.964 (4)	161
$C1-H1A\cdots O12^{iv}$	0.97	2.49	3.353 (5)	147
$C1 - H1B \cdots O24^{v}$	0.97	2.54	3.469 (5)	160
$C17 - H17B \cdots O11^{ii}$	0.97	2.38	3.265 (4)	152
C26-H26···O4	0.93	2.38	2.704 (5)	100
$C26-H26\cdots O13^{vi}$	0.93	2.47	3.284 (4)	146
$C29-H29\cdots O23^{vii}$	0.93	2.55	3.183 (4)	126

 $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}.$

H atoms bonded to atom O1 were located in a difference Fourier map and were refined in a riding-model approximation, with $U_{iso}(H)$

= $1.2U_{eq}(O)$, or $1.5U_{eq}(O)$ for H1*E*. All other atoms were placed in calculated positions, with C-H = 0.93–0.97 Å, N-H = 0.86 Å and O-H = 0.85 Å, and refined in a riding-model approximation, with $U_{iso}(H) = 1.2U_{eq}(\text{carrier atom})$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

The authors are grateful to Professor Yici Gao and Yizhi Li for helpful discussions and the crystal structure.

References

Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.