Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hui-Lu Wu,* Wen-Kui Dong and Ying Chen

School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China

Correspondence e-mail: wuhuilu@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in solvent or counterion
R factor $=0.045$
$w R$ factor $=0.131$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Aqua[tris(1H-benzimidazol-2-ylmethyl)amine]copper(II) bis(perchlorate) 4-nitropyridine N-oxide monohydrate

In the title structure, $\left[\mathrm{Cu}\left(\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{7}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot-$ $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Cu}^{\text {II }}$ atom is bonded to a $\operatorname{tris}(1 H-$ benzimidazol-2-ylmethyl)amine (ntb) ligand and a water molecule through four N atoms and one O atom, giving a distorted trigonal-bipyramidal coordination geometry with approximate C_{3} molecular symmetry.

Comment

The asymmetric unit of the title compound, (I) (Fig. 1), consists of one $\left[\mathrm{Cu}(\mathrm{ntb})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ cation $[\mathrm{ntb}$ is $\operatorname{tris}(1 \mathrm{H}-$ benzimidazol-2-ylmethyl)amine], two perchlorate anions, one molecule of 4-nitropyridine N-oxide and one molecule of water of crystallization, which is disordered over two sites with equal occupancies. The $\mathrm{Cu}^{\mathrm{II}}$ atom is five-coordinate with an $\mathrm{N}_{4} \mathrm{O}$ ligand set. The ntb ligand acts as a tetradentate N-donor and an aqua O atom completes the coordination. The coordination geometry of the $\mathrm{Cu}^{\text {II }}$ atom is best described as distorted trigonal-bipyramidal, with approximate molecular site symmetry C_{3}. The coordination geometry around the $\mathrm{Cu}^{\text {II }}$ atoms appears to relieve steric crowding. The equatorial plane is occupied by three N atoms of three benzimidazolyl groups, while the $\mathrm{Cu}^{\mathrm{II}}$ atom protrudes towards O 1 and is 0.319 (1) \AA from the plane of atoms $\mathrm{N} 3 / \mathrm{N} 5 / \mathrm{N} 7$. The axial positions are occupied by N1 and O1. Selected bond lengths and angles are listed in Table 1.

The three benzimidazole ring arms of the ntb ligand form a cone-shaped cavity. The distortions of the $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$, $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 5$ and $\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 7$ angles, which are all $\mathrm{ca} 10^{\circ}$ less than the ideal 90°, are imposed by the geometry of the ntb ligand. In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, along with weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and a single significant $\pi-\pi$ stacking interaction [where $\operatorname{Cg} 1 \cdots \operatorname{Cg} 1(2-x,-y, 1-z)=$ $3.6833(3) \AA(C g 1$ is the centroid of ring atoms $\mathrm{C} 10 / \mathrm{N} 4 / \mathrm{C} 11 /$ $\mathrm{C} 16 / \mathrm{N} 5$) and the perpendicular distance is $3.49 \AA$] connect cations, anions and solvent molecules into a three-dimensional network (Table 2 and Fig. 2)

Figure 1
The asymmetric unit of (I), showing 30% probability displacement ellipsoids. H atoms have been omitted. Both disorder components are shown.

Figure 2
Partial packing plot (Spek, 2003) of (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Experimental

To a stirred solution of tris(1 H -benzimidazol-2-ylmethyl)amine $(407 \mathrm{mg}, 1 \mathrm{mmol})$ in methanol (20 ml), $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(370 \mathrm{mg}$, 1 mmol) was added, followed by the addition of a solution of 4 nitropyridine N-oxide ($140 \mathrm{mg}, 1 \mathrm{mmol}$) in methanol (5 ml). The resulting clear blue solution was stirred for 8 h and then allowed to stand at room temperature. Blue-green crystals suitable for X-ray diffraction studies were obtained after three weeks (yield 437 mg ,
51%). Analysis, found: C $40.95, \mathrm{H} 3.41, \mathrm{~N} 14.63 \%$; calculated for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{CuN}_{9} \mathrm{O}_{13}$: C 41.17, H 3.43, N 14.89%.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{7}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot-$
$V=3732.2(15) \AA^{3}$

$$
\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}
$$

$Z=4$
$M_{r}=846.05$
Monoclinic, $P 2_{1} / n$
$a=11.986$ (3) \AA
$D_{x}=1.506 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.80 \mathrm{~mm}^{-1}$
$b=24.134$ (6) A
$c=14.226$ (3) \AA
$T=298$ (2) K
Block, blue-green
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.83, T_{\text {max }}=0.85$
19956 measured reflections
7345 independent reflections
5401 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.012$
$\theta_{\text {max }}=26.0^{\circ}$

Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.131$
$S=1.00$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.07 P)^{2}\right.$
$+1.99 P$]
where $P=\left(F_{o}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.35 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.34$ e \AA^{-3}

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.957(2)$	$\mathrm{Cu} 1-\mathrm{N} 5$	$2.085(3)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$1.992(3)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.127(3)$
$\mathrm{Cu} 1-\mathrm{N} 7$	$2.023(3)$		
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$96.50(10)$	$\mathrm{N} 7-\mathrm{Cu} 1-\mathrm{N} 5$	$106.90(11)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 7$	$98.53(10)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$176.53(10)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 7$	$128.01(11)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 1$	$80.78(11)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 5$	$102.72(10)$	$\mathrm{N} 7-\mathrm{Cu} 1-\mathrm{N} 1$	$81.59(11)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 5$	$117.68(11)$	$\mathrm{N} 5-\mathrm{Cu} 1-\mathrm{N} 1$	$80.52(11)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1C..O21	0.85	2.44	3.230 (4)	156
$\mathrm{O} 1-\mathrm{H} 1 E \cdots \mathrm{O} 2^{\text {i }}$	0.82	2.17	2.807 (3)	135
$\mathrm{O} 1 W-\mathrm{H} 1 W C \cdots \mathrm{O} 1$	0.85	2.34	2.733 (5)	108
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2^{\text {ii }}$	0.86	2.57	3.274 (4)	139
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 14^{\text {ii }}$	0.86	2.48	3.159 (4)	136
N6-H6A \cdots O24 ${ }^{\text {iii }}$	0.86	2.14	2.964 (4)	161
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 12^{\text {iv }}$	0.97	2.49	3.353 (5)	147
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{O} 24^{\text {v }}$	0.97	2.54	3.469 (5)	160
$\mathrm{C} 17-\mathrm{H} 17 \mathrm{~B} \cdots \mathrm{O} 11^{\text {ii }}$	0.97	2.38	3.265 (4)	152
C26-H26 \cdots O 4	0.93	2.38	2.704 (5)	100
C26-H26 . $\mathrm{O} 13^{\text {vi }}$	0.93	2.47	3.284 (4)	146
$\mathrm{C} 29-\mathrm{H} 29 \cdots \mathrm{O} 23^{\text {vii }}$	0.93	2.55	3.183 (4)	126

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x+1,-y,-z$; (iv) $\quad x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (v) $\quad x+1, y, z ; \quad$ (vi) $\quad x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (vii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.

H atoms bonded to atom O1 were located in a difference Fourier map and were refined in a riding-model approximation, with $U_{\text {iso }}(\mathrm{H})$

metal-organic papers

$=1.2 U_{\mathrm{eq}}(\mathrm{O})$, or $1.5 U_{\mathrm{eq}}(\mathrm{O})$ for $\mathrm{H} 1 E$. All other atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $\mathrm{O}-\mathrm{H}=0.85 \AA$, and refined in a riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ carrier atom $)$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

The authors are grateful to Professor Yici Gao and Yizhi Li for helpful discussions and the crystal structure.

References

Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

